Geosciences (Oct 2019)

The Geochemistry of 1 ky Old Euxinic Sediments of the Western Black Sea

  • Octavian G. Duliu,
  • Carmen I. Cristache,
  • Ana-Voica Bojar,
  • Gheorghe Oaie,
  • Otilia-Ana Culicov,
  • Marina V. Frontasyeva,
  • Emil Constantinescu

DOI
https://doi.org/10.3390/geosciences9110455
Journal volume & issue
Vol. 9, no. 11
p. 455

Abstract

Read online

To get more data on the geochemistry of Black Sea euxinic sediments, a 50-cm core was collected at a depth of 600 m on a Western Black Sea Continental Platform slope. The core contained unconsolidated sediments rich in cocoolithic ooze and mud. Epithermal Neutron and Prompt Gamma Activation Analysis were used to determine the content of nine major (Na, Mg, Al, Si, K, Ca, Ti, Mn, and Fe as oxides) and 32 trace elements (Cl, Sc, V, Cr, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Sn, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Yb, Hf, Ta, W, Th, and U) with a precision varying between 3 and 9%. The core contained unconsolidated sediment rich in coccolithic ooze and mud. Previous 210 Pb geochronology suggests an age of ∼1 ky of considered sediments. Major components distribution showed that, except for Cl and Ca, the contents of all other elements are similar to Upper Continental Crust (UCC) and North American Shale Composite (NASC). The distribution of the 32 trace elements showed similarities to the UCC, except for redox-sensitive metals Fe, Se, Mo, and U, of which the significantly higher content reflects the presence of euxinic conditions during deposition. A chondrite normalized plot of nine rare earth elements indicated a similarity to UCC and NASC, suggesting a continental origin of sedimentary material.

Keywords