Polymers (Jun 2024)

Preparation of Gradient Polyurethane and Its Performance for Flexible Sensors

  • Chuanqi Ning,
  • Depeng Gong,
  • Lili Wu,
  • Wanyu Chen,
  • Chaocan Zhang

DOI
https://doi.org/10.3390/polym16121617
Journal volume & issue
Vol. 16, no. 12
p. 1617

Abstract

Read online

Flexible sensors are prone to the problems of slow recovery rate and large residual strain in practical use. In this paper, a polyurethane functional composite with a gradient change in elastic modulus is proposed as a flexible sensor to meet the recovery rate and residual strain without affecting the motion. Different hard and soft segment ratios are used to synthesize a gradient polyurethane structure. The conductive percolation threshold was obtained between 45 wt% and 50 wt% of flake silver powder. Both gradient polyurethane and gradient polyurethane composites demonstrated that gradient materials can increase the recovery rate and reduce residual strain. The gradient polyurethane composites had a tensile strength of 3.26 MPa, an elastic modulus of 2.58 MPa, an elongation at break of 245%, a sensitivity coefficient of 1.20 at 0–25% deformation, a sensitivity coefficient of 11.38 at 25–75% deformation, a rate of recovery of 1.95 s at a time, and a resistance to fatigue (over 1000 cycles at a fixed strain of 20% showed a stable electrical response). The sensing performance under different cyclic strain frequencies was also investigated. The process has practical applications in the field of wearable skin motion and health monitoring.

Keywords