Beilstein Journal of Nanotechnology (Jul 2018)

Self-assembled quasi-hexagonal arrays of gold nanoparticles with small gaps for surface-enhanced Raman spectroscopy

  • Emre Gürdal,
  • Simon Dickreuter,
  • Fatima Noureddine,
  • Pascal Bieschke,
  • Dieter P. Kern,
  • Monika Fleischer

DOI
https://doi.org/10.3762/bjnano.9.188
Journal volume & issue
Vol. 9, no. 1
pp. 1977 – 1985

Abstract

Read online

The fabrication and optical characterization of self-assembled arrangements of rough gold nanoparticles with a high area coverage and narrow gaps for surface-enhanced Raman spectroscopy (SERS) are reported. A combination of micellar nanolithography and electroless deposition (ED) enables the tuning of the spacing and size of the noble metal nanoparticles. Long-range ordered quasi-hexagonal arrays of gold nanoparticles on silicon substrates with a variation of the particle sizes from about 20 nm to 120 nm are demonstrated. By increasing the particle sizes for the homogeneously spaced particles, a large number of narrow gaps is created, which together with the rough surface of the particles induces a high density of intense hotspots. This makes the surfaces interesting for future applications in near-field-enhanced bio-analytics of molecules. SERS was demonstrated by measuring Raman spectra of 4-MBA on the gold nanoparticles. It was verified that a smaller inter-particle distance leads to an increased SERS signal.

Keywords