International Journal of Molecular Sciences (Jan 2021)

Pseudo-Dipeptide Bearing α,α<italic/>-Difluoromethyl Ketone Moiety as Electrophilic Warhead with Activity against Coronaviruses

  • Andrea Citarella,
  • Davide Gentile,
  • Antonio Rescifina,
  • Anna Piperno,
  • Barbara Mognetti,
  • Giorgio Gribaudo,
  • Maria Teresa Sciortino,
  • Wolfgang Holzer,
  • Vittorio Pace,
  • Nicola Micale

DOI
https://doi.org/10.3390/ijms22031398
Journal volume & issue
Vol. 22, no. 3
p. 1398

Abstract

Read online

The synthesis of α-fluorinated methyl ketones has always been challenging. New methods based on the homologation chemistry via nucleophilic halocarbenoid transfer, carried out recently in our labs, allowed us to design and synthesize a target-directed dipeptidyl α,α-difluoromethyl ketone (DFMK) 8 as a potential antiviral agent with activity against human coronaviruses. The ability of the newly synthesized compound to inhibit viral replication was evaluated by a viral cytopathic effect (CPE)-based assay performed on MCR5 cells infected with one of the four human coronaviruses associated with respiratory distress, i.e., hCoV-229E, showing antiproliferative activity in the micromolar range (EC50 = 12.9 ± 1.22 µM), with a very low cytotoxicity profile (CC50 = 170 ± 3.79 µM, 307 ± 11.63 µM, and 174 ± 7.6 µM for A549, human embryonic lung fibroblasts (HELFs), and MRC5 cells, respectively). Docking and molecular dynamics simulations studies indicated that 8 efficaciously binds to the intended target hCoV-229E main protease (Mpro). Moreover, due to the high similarity between hCoV-229E Mpro and SARS-CoV-2 Mpro, we also performed the in silico analysis towards the second target, which showed results comparable to those obtained for hCoV-229E Mpro and promising in terms of energy of binding and docking pose.

Keywords