Pharmaceuticals (Apr 2023)

Imageological/Structural Study regarding the Improved Pharmacokinetics by <sup>68</sup>Ga-Labeled PEGylated PSMA Multimer in Prostate Cancer

  • Huihui Zhang,
  • Maohua Rao,
  • Huayi Zhao,
  • Jianli Ren,
  • Lan Hao,
  • Meng Zhong,
  • Yue Chen,
  • Xia Yang,
  • Yue Feng,
  • Gengbiao Yuan

DOI
https://doi.org/10.3390/ph16040589
Journal volume & issue
Vol. 16, no. 4
p. 589

Abstract

Read online

PMSA (prostate-specific membrane antigen) is currently the most significant target for diagnosing and treating PCa (prostate cancer). Herein, we reported a series 68Ga/177Lu-labeled multimer PSMA tracer conjugating with PEG chain, including [68Ga]Ga-DOTA-(1P-PEG4), [68Ga]Ga-DOTA-(2P-PEG0), [68Ga]Ga-DOTA-(2P-PEG4), and [68Ga]Ga/[177Lu]Lu-DOTA-(2P-PEG4)2, which showed an advantage of a multivalent effect and PEGylation to achieve higher tumor accumulation and faster kidney clearance. To figure out how structural optimizations based on a PSMA multimer and PEGylation influence the probe’s tumor-targeting ability, biodistribution, and metabolism, we examined PSMA molecular probes’ affinities to PC-3 PIP (PSMA-highly-expressed PC-3 cell line), and conducted pharmacokinetics analysis, biodistribution detection, small animal PET/CT, and SPECT/CT imaging. The results showed that PEG4 and PSMA dimer optimizations enhanced the probes’ tumor-targeting ability in PC-3 PIP tumor-bearing mice models. Compared with the PSMA monomer, the PEGylated PSMA dimer reduced the elimination half-life in the blood and increased uptake in the tumor, and the biodistribution results were consistent with PET/CT imaging results. [68Ga]Ga-DOTA-(2P-PEG4)2 exhibited higher tumor-to-organ ratios. When labeled by lutetium-177, relatively high accumulation of DOTA-(2P-PEG4)2 was still detected in PC-3 PIP tumor-bearing mice models after 48 h, indicating its prolonged tumor retention time. Given the superiority in imaging, simple synthetic processes, and structural stability, DOTA-(2P-PEG4)2 is expected to be a promising tumor-targeting diagnostic molecular probe in future clinical practice.

Keywords