Engineering Proceedings (Feb 2024)
Comparative Performance Studies of Up- and Down-Milling on AA7075 Plate
Abstract
The monitoring of machining has been the focus of widespread research in recent years because of its substantial contribution to manufacturing process automation. To maximise productivity, the spindle speed and feed have been increased, which has increased noise and temperature generation in the workpiece and tool. Such loud noise levels are uncomfortable for the operators, create stress, and have negative health effects, which reduces productivity. Controlling the temperature and noise produced during milling is crucial. Among its several series, the aluminium alloy 7075 (AA7075) is one of the strong alloys utilised in aircraft structural components. Hence, the present work examines the effect of spindle speed, feed, and depth of cut on noise and temperature generation during the end-milling of an AA7075 plate with 0.25-inch thickness. The sound and temperature were measured for both up- and down-milling processes and compared. In up-milling, the temperature and noise varied from 32.9 to 50.6 °C and 87.5 to 95 dB and the same were varied from 30.6 to 36.2 °C and 89.6 to 93.9 dB for down-milling. Finally, it was recommended that down-milling is the best process with low noise and temperature generation.
Keywords