PLoS ONE (Jan 2021)

Dental wear patterns reveal dietary ecology and season of death in a historical chimpanzee population.

  • Julia Stuhlträger,
  • Ellen Schulz-Kornas,
  • Ottmar Kullmer,
  • Marcel M Janocha,
  • Roman M Wittig,
  • Kornelius Kupczik

DOI
https://doi.org/10.1371/journal.pone.0251309
Journal volume & issue
Vol. 16, no. 5
p. e0251309

Abstract

Read online

Dental wear analyses have been widely used to interpret the dietary ecology in primates. However, it remains unclear to what extent a combination of wear analyses acting at distinct temporal scales can be beneficial in interpreting the tooth use of primates with a high variation in their intraspecific dietary ecology. Here, we combine macroscopic tooth wear (occlusal fingerprint analysis, long-term signals) with microscopic 3D surface textures (short-term signals) exploring the tooth use of a historical western chimpanzee population from northeastern Liberia with no detailed dietary records. We compare our results to previously published tooth wear and feeding data of the extant and continually monitored chimpanzees of Taї National Park in Ivory Coast. Macroscopic tooth wear results from molar wear facets of the Liberian population indicate only slightly less wear when compared to the Taї population. This suggests similar long-term feeding behavior between both populations. In contrast, 3D surface texture results show that Liberian chimpanzees have many and small microscopic wear facet features that group them with those Taї chimpanzees that knowingly died during dry periods. This coincides with historical accounts, which indicate that local tribes poached and butchered the Liberian specimens during dust-rich dry periods. In addition, Liberian females and males differ somewhat in their 3D surface textures, with females having more microscopic peaks, smaller hill and dale areas and slightly rougher wear facet surfaces than males. This suggests a higher consumption of insects in Liberian females compared to males, based on similar 3D surface texture patterns previously reported for Taї chimpanzees. Our study opens new options for uncovering details of feeding behaviors of chimpanzees and other living and fossil primates, with macroscopic tooth wear tracing the long-term dietary and environmental history of a single population and microscopic tooth wear addressing short-term changes (e.g. seasonality).