Nanomaterials (Jan 2022)

Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting

  • Justine Sageka Nyarige,
  • Alexander T. Paradzah,
  • Tjaart P. J. Krüger,
  • Mmantsae Diale

DOI
https://doi.org/10.3390/nano12030366
Journal volume & issue
Vol. 12, no. 3
p. 366

Abstract

Read online

In this study, zinc-doped (α-Fe2O3:Zn), silver-doped (α-Fe2O3:Ag) and zinc/silver co-doped hematite (α-Fe2O3:Zn/Ag) nanostructures were synthesized by spray pyrolysis. The synthesized nanostructures were used as photoanodes in the photoelectrochemical (PEC) cell for water-splitting. A significant improvement in photocurrent density of 0.470 mAcm−2 at 1.23 V vs. reversible hydrogen electrode (RHE) was recorded for α-Fe2O3:Zn/Ag. The α-Fe2O3:Ag, α-Fe2O3:Zn and pristine hematite samples produced photocurrent densities of 0.270, 0.160, and 0.033 mAcm−2, respectively. Mott–Schottky analysis showed that α-Fe2O3:Zn/Ag had the highest free carrier density of 8.75 × 1020 cm−3, while pristine α-Fe2O3, α-Fe2O3:Zn, α-Fe2O3:Ag had carrier densities of 1.57 × 1019, 5.63 × 1020, and 6.91 × 1020 cm−3, respectively. Electrochemical impedance spectra revealed a low impedance for α-Fe2O3:Zn/Ag. X-ray diffraction confirmed the rhombohedral corundum structure of hematite. Scanning electron microscopy micrographs, on the other hand, showed uniformly distributed grains with an average size of <30 nm. The films were absorbing in the visible region with an absorption onset ranging from 652 to 590 nm, corresponding to a bandgap range of 1.9 to 2.1 eV. Global analysis of ultrafast transient absorption spectroscopy data revealed four decay lifetimes, with a reduction in the electron-hole recombination rate of the doped samples on a timescale of tens of picoseconds.

Keywords