Neoplasia: An International Journal for Oncology Research (Jul 2010)

How Do Bisphosphonates Inhibit Bone Metastasis In Vivo

  • Pierrick G. Fournier,
  • Verena Stresing,
  • Frank H. Ebetino,
  • Philippe Clezardin

DOI
https://doi.org/10.1593/neo.10282
Journal volume & issue
Vol. 12, no. 7
pp. 571 – 578

Abstract

Read online

Bisphosphonates are potent inhibitors of osteoclast-mediated bone resorption and have demonstrated clinical utility in the treatment of patients with osteolytic bone metastases. They also exhibit direct antitumor activity in vitro and can reduce skeletal tumor burden and inhibit the formation of bone metastases in vivo. However, whether such effects are caused by a direct action of bisphosphonates on tumor cells or indirectly through inhibition of bone resorption remains unclear. To address this question, we used here a structural analog of the bisphosphorate risedronate, NE-58051, which has a bone mineral affinity similar to that of risedronate, but a 3000-fold lower bone antiresorptive activity. In vitro, risedronate and NE-58051 inhibited proliferation of breast cancer and melanoma cell lines. In vivo, risedronate and NE-58051 did not inhibit the growth of subcutaneous B02 breast tumor xenografts or the formation of B16F10 melanoma lung metastasis. In contrast to NE-58051, risedronate did inhibit B02 breast cancer bone metastasis formation by reducing both bone destruction and skeletal tumor burden, indicating that the antitumor effect of bisphosphonates is achieved mainly through inhibition of osteoclast-mediated bone resorption.