Journal of Energy (Jan 2013)
An Improved Walsh Function Algorithm for Use in Sinusoidal and Nonsinusoidal Power Components Measurement
Abstract
This paper presents an improved Walsh function IWF algorithms as an alternative approach for active and reactive powers measurement in linear and nonlinear, balanced and unbalanced sinusoidal three-phase load system. It takes advantage of Walsh function unified approach, simple algorithm and its intrinsic high level of accuracy as a result of coefficient characteristics and energy behaviour representation. The developed algorithm was modeled on the Matlab Simulink software; different types of load, linear and nonlinear, were also modeled based on practical voltage and current waveforms and tested with the proposed improved Walsh algorithms. The IEEE standard 1459–2000 which is based on fast Fourier transform FFT approach was used as benchmark for the linear load system. The data obtained from laboratory experiment to determine power components in harmonic load systems using Fluke 435 power quality analyzer PQA which complies with IEC/EN61010-1-2001 standard was modeled and used to validate the improved algorithm for nonlinear load measurement. The results showed that the algorithm has the potential to effectively measure three-phase power components under different load conditions.