BMC Complementary and Alternative Medicine (Apr 2017)

HVC1 ameliorates hyperlipidemia and inflammation in LDLR−/− mice

  • Se-Yun Cheon,
  • Kyung-Sook Chung,
  • Kyung-Jin Lee,
  • Ho-Young Choi,
  • In-Hye Ham,
  • Dong-Hoon Jung,
  • Yun-Yeop Cha,
  • Hyo-Jin An

DOI
https://doi.org/10.1186/s12906-017-1734-z
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background HVC1 consists of Coptidis Rhizoma (dried rhizome of Coptischinensis), Scutellariae Radix (root of Scutellariabaicalensis), Rhei Rhizoma (rhizome of Rheum officinale), and Pruni Cortex (cortex of Prunusyedoensis Matsum). Although the components are known to be effective in various conditions such as inflammation, hypertension, and hypercholesterolemia, there are no reports of the molecular mechanism of its hypolipidemic effects. Methods We investigated the hypolipidemic effect of HVC1 in low-density lipoprotein receptor-deficient (LDLR−/−) mice fed a high-cholesterol diet for 13 weeks. Mice were randomized in to 6 groups: ND (normal diet) group, HCD (high-cholesterol diet) group, and treatment groups fed HCD and treated with simvastatin (10 mg/kg, p.o.) or HVC1 (10, 50, or 250 mg/kg, p.o.). Results HVC1 regulated the levels of total cholesterol, triglyceride (TG), low-density lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) cholesterol in mouse serum. In addition, it regulated the transcription level of the peroxisome proliferator-activated receptors (PPARs), sterol regulatory element-binding proteins (SREBP)-2, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, lipoprotein lipase (LPL), apolipoprotein B (apo B), liver X receptor (LXR), and inflammatory cytokines (IL-1β, IL-6, and TNF-α). Furthermore, HVC1 activated 5′ adenosine monophosphate-activated protein kinase (AMPK). Conclusion Our results suggest that HVC1 might be effective in preventing high-cholesterol diet-induced hyperlipidemia by regulating the genes involved in cholesterol and lipid metabolism, and inflammatory responses.

Keywords