PLoS ONE (Jan 2014)
In vivo imaging of mGluR5 changes during epileptogenesis using [11C]ABP688 PET in pilocarpine-induced epilepsy rat model.
Abstract
Metabotropic glutamate receptor 5 (mGluR5) that regulates glutamatergic neurotransmission contributes to pathophysiology of epilepsy. In this study, we monitored the changes of mGluR5 in vivo using [11C]ABP688 PET during the epileptogenesis in a pilocarpine-induced epilepsy rat model.In vivo mGluR5 images were acquired using [11C]ABP688 microPET/CT in pilocarpine-induced chronic epilepsy rat models and controls. We also acquired microPET/CT at acute, subacute as well as chronic periods after status epilepticus. Non-displaceable binding potential (BPND) of [11C]ABP688 was calculated using simplified reference tissue model in a voxel-based manner. mGluR5 BPND of the rat brains of epilepsy models and controls were compared.Status epilepticus developed after pilocarpine administration and was followed by recurrent spontaneous seizures for more than 3 weeks. In chronic epilepsy rat model, BPND in hippocampus and amygdala was reduced on a voxel-based analysis. Temporal changes of mGluR5 BPND was also found. In acute period after status epilepticus, mGluR5 BPND was reduced in the whole brain. BPND of caudate-putamen was restored in subacute period, while BPND of the rest of the brain was still lower. In chronic period, global BPND was normalized except in hippocampus and amygdala.In vivo imaging of mGluR5 using [11C]ABP688 microPET/CT could successfully reveal the regional changes of mGluR5 binding potential of the rat brain in a pilocarpine-induced epilepsy model. The temporal and spatial changes in mGluR5 availability suggest [11C]ABP688 PET imaging in epilepsy provide abnormal glutamatergic network during epileptogenesis.