Special Matrices (Jan 2019)

Self-dual Leonard pairs

  • Nomura Kazumasa,
  • Terwilliger Paul

DOI
https://doi.org/10.1515/spma-2019-0001
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 19

Abstract

Read online

Let F denote a field and let V denote a vector space over F with finite positive dimension. Consider a pair A, A* of diagonalizable F-linear maps on V, each of which acts on an eigenbasis for the other one in an irreducible tridiagonal fashion. Such a pair is called a Leonard pair. We consider the self-dual case in which there exists an automorphism of the endomorphism algebra of V that swaps A and A*. Such an automorphism is unique, and called the duality A ↔ A*. In the present paper we give a comprehensive description of this duality. In particular,we display an invertible F-linearmap T on V such that the map X → TXT−1is the duality A ↔ A*. We express T as a polynomial in A and A*. We describe how T acts on 4 flags, 12 decompositions, and 24 bases for V.

Keywords