Pangenome-Wide Association Study and Transcriptome Analysis Reveal a Novel QTL and Candidate Genes Controlling both Panicle and Leaf Blast Resistance in Rice
Jian Wang,
Haifei Hu,
Xianya Jiang,
Shaohong Zhang,
Wu Yang,
Jingfang Dong,
Tifeng Yang,
Yamei Ma,
Lian Zhou,
Jiansong Chen,
Shuai Nie,
Chuanguang Liu,
Yuese Ning,
Xiaoyuan Zhu,
Bin Liu,
Jianyuan Yang,
Junliang Zhao
Affiliations
Jian Wang
Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory
Haifei Hu
Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory
Xianya Jiang
Yangjiang Institute of Agricultural Sciences
Shaohong Zhang
Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory
Wu Yang
Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory
Jingfang Dong
Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory
Tifeng Yang
Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory
Yamei Ma
Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory
Lian Zhou
Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory
Jiansong Chen
Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory
Shuai Nie
Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory
Chuanguang Liu
Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory
Yuese Ning
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences
Xiaoyuan Zhu
Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of High Technology for Plant Protection
Bin Liu
Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory
Jianyuan Yang
Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of High Technology for Plant Protection
Junliang Zhao
Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory
Abstract Cultivating rice varieties with robust blast resistance is the most effective and economical way to manage the rice blast disease. However, rice blast disease comprises leaf and panicle blast, which are different in terms of resistance mechanisms. While many blast resistant rice cultivars were bred using genes conferring resistance to only leaf or panicle blast, mining durable and effective quantitative trait loci (QTLs) for both panicle and leaf blast resistance is of paramount importance. In this study, we conducted a pangenome-wide association study (panGWAS) on 9 blast resistance related phenotypes using 414 international diverse rice accessions from an international rice panel. This approach led to the identification of 74 QTLs associated with rice blast resistance. One notable locus, qPBR1, validated in a F4:5 population and fine-mapped in a Heterogeneous Inbred Family (HIF), exhibited broad-spectrum, major and durable blast resistance throughout the growth period. Furthermore, we performed transcriptomic analysis of 3 resistant and 3 sensitive accessions at different time points after infection, revealing 3,311 differentially expressed genes (DEGs) potentially involved in blast resistance. Integration of the above results identified 6 candidate genes within the qPBR1 locus, with no significant negative effect on yield. The results of this study provide valuable germplasm resources, QTLs, blast response genes and candidate functional genes for developing rice varieties with enduring and broad-spectrum blast resistance. The qPBR1, in particular, holds significant potential for breeding new rice varieties with comprehensive and durable resistance throughout their growth period.