Plants (Nov 2024)

Comprehensive Genome-Wide Analysis of the Receptor-like Protein Gene Family and Functional Analysis of <i>PeRLP8</i> Associated with Crown Rot Resistance in <i>Passiflora edulis</i>

  • Weijun Yu,
  • Fan Liang,
  • Yue Li,
  • Wenjie Jiang,
  • Yongkang Li,
  • Zitao Shen,
  • Ting Fang,
  • Lihui Zeng

DOI
https://doi.org/10.3390/plants13233264
Journal volume & issue
Vol. 13, no. 23
p. 3264

Abstract

Read online

Passion fruit (Passiflora edulis Sims) is a Passifloraceae plant with high economic value. Crown rot caused by Rhizoctonia solani is a major fungal disease, which can seriously reduce the yield and quality of passion fruit. Receptor-like proteins (RLPs), which act as pathogen recognition receptors, are widely involved in plant immune responses and developmental processes. However, the role of RLP family members of passion fruit in resistance to crown rot remains unclear. In this study, evolutionary dynamics analysis and comprehensive genomic characterization of the RLP genes family were performed on passion fruit. A total of 141 PeRLPs in the genome of the ‘Zixiang’ cultivar and 79 PesRLPs in the genome of the ‘Tainong’ cultivar were identified, respectively. Evolutionary analysis showed that proximal and dispersed duplication events were the primary drivers of RLP family expansion. RNA-seq data and RT-qPCR analysis showed that PeRLPs were constitutively expressed in different tissues and induced by low temperature, JA, MeJA, and SA treatments. The PeRLP8 gene was identified as the hub gene by RNA-seq analysis of passion fruit seedlings infected by Rhizoctonia solani. The expression levels of PeRLP8 of the resistant variety Passiflora maliformis (LG) were significantly higher than those of the sensitive variety Passiflora edulis f. flavicarpa (HG). Transient overexpression of PeRLP8 tobacco and passion fruit leaves enhanced the resistance to Rhizoctonia solani, resulting in reduced lesion areas by 52.06% and 54.17%, respectively. In addition, it can increase reactive oxygen species levels and upregulated expression of genes related to active oxygen biosynthesis and JA metabolism in passion fruit leaves. Our research provides new insights into the molecular mechanism and breeding strategy of passion fruit resistance to crown rot.

Keywords