Identification of competing neural mechanisms underlying positive and negative perceptual hysteresis in the human visual system
Alexandre Sayal,
Teresa Sousa,
João V. Duarte,
Gabriel N. Costa,
Ricardo Martins,
Miguel Castelo-Branco
Affiliations
Alexandre Sayal
Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Siemens Healthineers, Portugal
Teresa Sousa
Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal
João V. Duarte
Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal
Gabriel N. Costa
Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal
Ricardo Martins
Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal
Miguel Castelo-Branco
Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal; ICNAS Produção, University of Coimbra, Portugal; Corresponding author. ICNAS - Institute of Nuclear Sciences Applied to Health, University of Coimbra Polo 3, 3000-548, Coimbra, Portugal.
Hysteresis is a well-known phenomenon in physics that relates changes in a system with its prior history. It is also part of human visual experience (perceptual hysteresis), and two different neural mechanisms might explain it: persistence (a cause of positive hysteresis), which forces to keep a current percept for longer, and adaptation (a cause of negative hysteresis), which in turn favors the switch to a competing percept early on. In this study, we explore the neural correlates underlying these mechanisms and the hypothesis of their competitive balance, by combining behavioral assessment with fMRI. We used machine learning on the behavioral data to distinguish between positive and negative hysteresis, and discovered a neural correlate of persistence at a core region of the ventral attention network, the anterior insula. Our results add to the understanding of perceptual multistability and reveal a possible mechanistic explanation for the regulation of different forms of perceptual hysteresis.