EPJ Web of Conferences (Jan 2016)

Vertical Variation of Optical Properties of Mixed Asian Dust/Pollution Plumes According to Pathway of Airmass Transport Over East Asia

  • Shin Sung-Kyun,
  • Müller Detlef,
  • Lee K.H.,
  • Shin D.,
  • Kim Y. J.,
  • Noh Y. M.

DOI
https://doi.org/10.1051/epjconf/201611908001
Journal volume & issue
Vol. 119
p. 08001

Abstract

Read online

We use five years (2009 – 2013) of multiwavelength Raman lidar measurements at Gwangju, Korea (35.10° N, 126.53° E) for the identification of changes of optical properties of East Asian dust in dependence of its transport path over China. Profiles of backscatter and extinction coefficients, lidar ratios, and backscatter-related Ångström exponents (wavelength pair 355/532nm) were measured at Gwangju. Linear particle depolarization ratios were used to identify East Asian dust layers. We used backward trajectory modelling to identify the pathway and the vertical position of dust-laden air masses over China during long-range transport. Most cases of Asian dust events can be described by the emission of dust in desert areas and subsequent transport over highly polluted regions of China. The Asian dust plumes could be categorized into two classes according to the height above ground in which these plumes were transported: (I) the dust layers passed over China at high altitude levels until arrival over Gwangju, and (II) the Asian dust layers were transported near the surface and the lower troposphere over industrialized areas before they arrived over Gwangju. We find that the optical characteristics of these mixed Asian dust layers over Gwangju differ in dependence of their vertical position above ground over China and the change of height above ground during transport. The mean linear particle depolarization ratio was 0.21±0.06 (at 532 nm), the mean lidar ratios were 52±7 sr at 355 nm and 53±8 sr at 532 nm, and the mean Ångström exponent was 0.74±0.31 in case I. In contrast, plumes transported at lower altitudes (case II) showed low depolarization ratios, and higher lidar ratio and Ångström exponents. The mean linear particle depolarization ratio was 0.13 ± 0.04, the mean lidar ratios were 63±9 sr at 355 nm and 62±8 sr at 532 nm, respectively, and the mean Ångström exponent was 0.98±0.51. These numbers show that the optical characteristics of mixed Asian plumes are more similar to optical characteristics of urban pollution.