Nuclear Engineering and Technology (Apr 2022)
Selection of burnable poison in plate fuel assembly for small modular marine reactors
Abstract
Small modular reactors have garnered considerable attention in the recent years. Plate fuel elements exhibit a good application prospect in small modular pressurized water reactors for marine applications. Further, improved economic benefits can be achieved by extending the core lifetime of small modular reactors. However, it is necessary to realize a large initial residual reactivity for achieving a relatively long burnup depth finally. Thus, the selection of a suitable burnable poison (BP) is a crucial factor that should be considered in the design of small modular reactors. In this study, some candidate BPs are selected to realize the effective control of reactivity. The results show that 231Pa2O3, 240Pu2O3, 167Er2O3, PACS-J, and PACS-L are ideal candidates of BP, and since the characteristics of BP can increase the final burnup depth of assembly, the economic benefits are gained. Additionally, an optimal combination scheme of BPs is established. Specifically, it is proved that through a reasonable combination of BPs, a low reactivity fluctuation during the lifetime can be achieved, leading to a large final burnup depth.