Chinese Medicine (Jul 2021)

Corydalis saxicola Bunting total alkaloids attenuate paclitaxel-induced peripheral neuropathy through PKCε/p38 MAPK/TRPV1 signaling pathway

  • Chu Xue,
  • Si-Xue Liu,
  • Jie Hu,
  • Jin Huang,
  • Hong-Min Liu,
  • Zhi-Xia Qiu,
  • Fang Huang

DOI
https://doi.org/10.1186/s13020-021-00468-5
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Corydalis saxicola Bunting, affiliated with the Papaveraceae Juss., has been proven to work well in anti-inflammation, hemostasis, and analgesia. This study was designed to observe the effect and potential mechanism of Corydalis saxicola Bunting total alkaloids (CSBTA) on paclitaxel-induced peripheral neuropathy (PIPN). Materials and methods Rats were injected 2 mg/kg paclitaxel 4 times and administrated with 30 or 120 mg/kg CSBTA. Mechanical and thermal allodynia and hyperalgesia were tested. After 40 days, serum was collected to detect PGE2, TNF-α, and IL-1β by ELISA. The L4-L6 segment spinal cord, DRG, and plantar skin were harvested, and Western-blot or RT-qPCR analyzed protein and gene levels of pro-inflammatory cytokines, p38 MAPK, PKCε, and TRPV1. The PIPN cell model was established with paclitaxel (300 nM, 5 d) in primary DRG neurons. We examined the effect of CSBTA (25 μg/ml or 50 μg/ml) by measuring the mRNA levels in PGE2, TNF-α and CGRP, and the protein expression on the PKCε/p38 MAPK/TRPV1 signaling pathway in the PIPN cell model. Results The results showed that CSBTA effectively ameliorated allodynia and hyperalgesia, and regulated cytokines' contents (PGE2, TNF-α, and IL-1β) and neuropeptides (CGRP and SP) in different tissues in vivo. In addition, CSBTA significantly decreased cytokine gene levels of DRG neurons (PGE2, TNF-α, and CGRP) and the protein expressions of PKCε/p38 MAPK/TRPV1 signaling pathway in vivo and in vitro. Conclusion Therefore, CSBTA has a perspective therapeutic effect on the treatment of paclitaxel-induced peripheral neuropathy.

Keywords