Mediterranean Journal of Hematology and Infectious Diseases (Feb 2019)
SPECTRUM AND IMMUNOPHENOTYPIC PROFILE OF ACUTE LEUKEMIA: A TERTIARY CENTER FLOW CYTOMETRY EXPERIENCE
Abstract
Introduction: For diagnosis, sub-categorization and follow up of Acute Leukemia (AL), phenotypic analysis using flow cytometry is mandatory. Material and methods: We retrospectively analyzed immunophenotypic data along with cytogenetics/molecular genetics data (wherever available) from 631 consecutive cases of AL diagnosed at our flow cytometry laboratory from January 2014 to August 2017. Results: Of the total 631 cases, 52.9% (n=334) were acute lymphoblastic leukemia (ALL), 43.9% (n=277) acute myeloid leukemia (AML), 2.2% (n=14) mixed phenotypic acute leukemia (MPAL) and0.5% (n=3) each of acute undifferentiated leukemia (AUL) and chronic myeloid leukemia in blast crisis (CML-BC). ALL cases comprised of 81.7% (n=273/334) B-cell ALLs (95.2%, n=260/273 common B-ALLs and 4.8%, n=13/273 Pro B-ALLs). CD13 was the commonest cross lineage antigen expressed in B-ALL (25.6%), followed by CD33 (17.9%) and combined CD13/CD33 (11.3%) expression. T-ALLs constituted 18.3% (n=61/334) of total ALLs and included 27.9% (n=17) cortical T- ALLs. CD13 was commonest (32.7%) aberrantly expressed antigen in T-ALLs, followed by CD117 (16.0%). AML cases included 32.1% (n=89/277) AML with recurrent genetic abnormalities, 9.0% (n=25/277) with FLT3/NPM1c mutation and 58.9% (n=163/277) AML NOS including 14.7% (n=24/163) AML M4/M5, 1.8% (n=3/163) AML M6 and 3.7% (n=6/163) AML M7. In AMLs, CD19 aberrancy was the most common (16.3%) followed by CD7 (11.9%). Conclusion: In this study we document the spectrum; correlate the immunophenotype with genetic data of all leukemias, especially with respect to T-ALL where the data from India is scarce.
Keywords