Remote Sensing (Nov 2022)
Distribution Characteristics of Cloud Types and Cloud Phases over China and Their Relationship with Cloud Temperature
Abstract
The existence of clouds significantly increases or decreases the net radiation of the Earth. The influence of cloud type and cloud phase on radiation is as important as cloud amount, and the physical processes of different types of clouds are obviously different. In this study, the occurrence frequency of different cloud types (low transparent, low opaque, stratocumulus, broken cumulus, altocumulus transparent, altostratus opaque, cirrus, and deep convective) and cloud phases (ice and water) over China and its surrounding areas (0–55°N, 70–140°E) are calculated based on cloud vertical feature mask products from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The results show significant spatial differences and seasonal variations in the distribution of different cloud types and cloud phases. There are four prevailing cloud types over the whole year, among which cirrus and altocumulus transparent are the most widely distributed and have the highest occurrence frequency. Cirrus clouds are mainly distributed at altitudes above 6 km north of 30°N and south of 20°N. Altocumulus transparent clouds are mainly distributed over the Qinghai–Tibet Plateau and at an altitude of 3–6 km to the north of 40°N, and they are more widely distributed in winter than in summer. Water clouds are mainly distributed in the latitude range of 20°N–40°N and are obviously influenced by the Qinghai–Tibet Plateau. Water clouds are widely distributed in autumn and winter. Ice clouds are mainly distributed in the areas south of 20°N and north of 40°N. Regardless of the choice of altitude between 3 km and 7 km, the boundary between ice cloud and water cloud is always near the −14 °C isotherm, and when the −14 °C isotherm moves southward, the ice-cloud distribution range expands southward. The probability density functions of the temperature in the cloud always show the distribution characteristics of two peaks and one valley, which is particularly obvious in the middle and high clouds, and the peak temperature is warmer than the sub-peak temperature. The valley temperature and its corresponding latitude of all cloud types are different: the cirrus valley temperature is not significantly affected by the Qinghai–Tibet Plateau, but the plateau has an effect on the latitude of the valley temperature distribution of other types of cloud. The above conclusions lay the foundation for further research on the radiation effects of different clouds on China and its surrounding areas and also have certain indicating significance for weather effects caused by various cloud physical processes.
Keywords