ASN Neuro (Apr 2013)
Brain Gangliosides of a Transgenic Mouse Model of Alzheimer's Disease with Deficiency in GD3-Synthase: Expression of Elevated Levels of a Cholinergic-Specific Ganglioside, GT1aα
Abstract
In order to examine the potential involvement of gangliosides in AD (Alzheimer's disease), we compared the ganglioside compositions of the brains of a double-transgenic (Tg) mouse model [APP (amyloid precursor protein)/PSEN1 (presenilin)] of AD and a triple mutant mouse model with an additional deletion of the GD3S (GD3-synthase) gene (APP/PSEN1/GD3S −/– ). These animals were chosen since it was previously reported that APP/PSEN1/GD3S −/– triple-mutant mice performed as well as WT (wild-type) control and GD3S −/– mice on a number of reference memory tasks. Cholinergic neuron-specific gangliosides, such as GT1aα and GQ1bα, were elevated in the brains of double-Tg mice (APP/PSEN1), as compared with those of WT mice. Remarkably, in the triple mutant mouse brains (APP/PSEN1/GD3S −/– ), the concentration of GT1aα was elevated and as expected there was no expression of GQ1bα. On the other hand, the level of c-series gangliosides, including GT3, was significantly reduced in the double-Tg mouse brain as compared with the WT. Thus, the disruption of the gene of a specific ganglioside-synthase, GD3S, altered the expression of cholinergic neuron-specific gangliosides. Our data thus suggest the intriguing possibility that the elevated cholinergic-specific ganglioside, GT1aα, in the triple mutant mouse brains (APP/PSEN1/GD3S −/– ) may contribute to the memory retention in these mice.