Atmospheric Measurement Techniques (Mar 2020)
Doppler lidar at Observatoire de Haute-Provence for wind profiling up to 75 km altitude: performance evaluation and observations
Abstract
A direct-detection Rayleigh–Mie Doppler lidar for measuring horizontal wind speed in the middle atmosphere (10 to 50 km altitude) has been deployed at Observatoire de Haute-Provence (OHP) in southern France starting from 1993. After a recent upgrade, the instrument gained the capacity of wind profiling between 5 and 75 km altitude with vertical resolution up to 115 m and temporal resolution up to 5 min. The lidar comprises a monomode Nd:Yag laser emitting at 532 nm, three telescope assemblies and a double-edge Fabry–Pérot interferometer for detection of the Doppler shift in the backscattered light. In this article, we describe the instrument design, recap retrieval methodology and provide an updated error estimate for horizontal wind. The evaluation of the wind lidar performance is done using a series of 12 time-coordinated radiosoundings conducted at OHP. A point-by-point intercomparison shows a remarkably small average bias of 0.1 m s−1 between the lidar and the radiosonde wind profiles with a standard deviation of 2.3 m s−1. We report examples of a weekly and an hourly observation series, reflecting various dynamical events in the middle atmosphere, such as a sudden stratospheric warming event in January 2019 and an occurrence of a stationary gravity wave, generated by the flow over the Alps. A qualitative comparison between the wind profiles from the lidar and the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System is also discussed. Finally, we present an example of early validation of the European Space Agency (ESA) Aeolus space-borne wind lidar using its ground-based predecessor.