Forests (Feb 2019)

Short-Term Effects of Different Forest Management Methods on Soil Microbial Communities of a Natural <i>Quercus aliena</i> var. <i>acuteserrata</i> Forest in Xiaolongshan, China

  • Pan Wan,
  • Gongqiao Zhang,
  • Zhonghua Zhao,
  • Yanbo Hu,
  • Wenzhen Liu,
  • Gangying Hui

DOI
https://doi.org/10.3390/f10020161
Journal volume & issue
Vol. 10, no. 2
p. 161

Abstract

Read online

One of the aims of sustainable forest management is to preserve the diversity and resilience of ecosystems. Unfortunately, changes in the soil microbial communities after forest management remain unclear. We analyzed and compared the soil microbial community of a natural Quercus aliena var. acuteserrata forest after four years of four different management methods using high-throughput sequencing technology. The forest management methods were close-to-nature management (CNFM), structure-based forest management (SBFM), secondary forest comprehensive silviculture (SFCS) and unmanaged control (CK). The results showed that: (1) the soil microbial community diversity indices were not significantly different among the different management methods. (2) The relative abundance of Proteobacteria in the SBFM treatment was lower than in the CK treatment, while the relative abundance of Acidobacteria in the SBFM was significantly higher than that in the CK treatment. The relative abundance of Ascomycota was highest in the CNFM treatment, and that of Basidiomycota was lowest in the CNFM treatment. However, the relative abundance of dominant bacterial and fungal phyla was not significantly different in CK and SFCS. (3) Redundancy analysis (RDA) showed that the soil organic matter (SOM), total nitrogen (TN), and available nitrogen (AN) significantly correlated with the bacterial communities, and the available potassium (AK) was the only soil nutrient, which significantly correlated with the composition of the fungal communities. The short-term SBFM treatment altered microbial bacterial community compositions, which may be attributed to the phyla present (e.g., Proteobacteria and Acidobacteria), and the short-term CNFM treatment altered microbial fungal community compositions, which may be attributed to the phyla present (e.g., Ascomycota and Basidiomycota). Furthermore, soil nutrients could affect the dominant soil microbial communities, and its influence was greater on the bacterial community than on the fungal community.

Keywords