EPJ Web of Conferences (Mar 2014)
Effect of gas expansion on the front shape of a Taylor bubble: an experimental contribution
Abstract
An experimental study where an individual Taylor bubble rises through water with different bubble volume expansion rates is presented with the (front) bubble shape determination as main objective. A combination of two techniques, Particle Image Velocimetry (PIV) and Pulsed Shadowgraphy (PS), was used to collect images for further treatment in order to characterize the liquid flow pattern in front of the bubble and the bubble shape. Processing the images acquired with pulsed illumination from behind the bubble it was possible to define with precision the bubble shape at different stages when it was expanding. The operation conditions used allowed a wide range of volume expansion rates (0 to 28.5 × 10-6 m3/s) with a significant effect on the Taylor bubble velocity; increases in bubble velocity up to 21% were observed relatively to constant volume system condition. Nevertheless, it seems that the front shape of Taylor bubbles does not change significantly with the upward liquid flow rates induced by gas expansion, at least for the volume expansion rates used in the experiments.