Antibacterial Effect of Chitosan–Gold Nanoparticles and Computational Modeling of the Interaction between Chitosan and a Lipid Bilayer Model
M. G. Fuster,
M. G. Montalbán,
G. Carissimi,
B. Lima,
G. E. Feresin,
M. Cano,
J. J. Giner-Casares,
J. J. López-Cascales,
R. D. Enriz,
G. Víllora
Affiliations
M. G. Fuster
Chemical Engineering Department, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain
M. G. Montalbán
Chemical Engineering Department, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain
G. Carissimi
Chemical Engineering Department, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain
B. Lima
Instituto de Biotecnología, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina
G. E. Feresin
Instituto de Biotecnología, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina
M. Cano
Departamento de Química Física y Termodinámica Aplicada, Instituto Universitario de Nanoquímica (IUNAN), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
J. J. Giner-Casares
Departamento de Química Física y Termodinámica Aplicada, Instituto Universitario de Nanoquímica (IUNAN), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
J. J. López-Cascales
Departamento Ingeniería Química y Ambiental, Campus Alfonso XIII, Universidad Politécnica de Cartagena, Aulario C, Cartagena, 30203 Murcia, Spain
R. D. Enriz
Facultad de Química, Bioquímica y Farmacia, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), CONICET, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis 5700, Argentina
G. Víllora
Chemical Engineering Department, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain
Pathogenic bacteria have the ability to develop antibiotic resistance mechanisms. Their action consists mainly in the production of bacterial enzymes that inactivate antibiotics or the appearance of modifications that prevent the arrival of the drug at the target point or the alteration of the target point itself, becoming a growing problem for health systems. Chitosan–gold nanoparticles (Cs-AuNPs) have been shown as effective bactericidal materials avoiding damage to human cells. In this work, Cs-AuNPs were synthesized using chitosan as the reducing agent, and a systematic analysis of the influence of the synthesis parameters on the size and zeta potential of the Cs-AuNPs and their UV-vis spectra was carried out. We used a simulation model to characterize the interaction of chitosan with bacterial membranes, using a symmetric charged bilayer and two different chitosan models with different degrees of the chitosan amine protonation as a function of pH, with the aim to elucidate the antibacterial mechanism involving the cell wall disruption. The Cs-AuNP antibacterial activity was evaluated to check the simulation model.