Нанотехнологии в строительстве (Apr 2024)

Methods of introducing a fine additive based on the TiO2 –Bi2 O3 system into cement compositions

  • Marina O. Dudareva,
  • Irina V. Kozlova

DOI
https://doi.org/10.15828/2075-8545-2024-16-2-90-99
Journal volume & issue
Vol. 16, no. 2
pp. 90 – 99

Abstract

Read online

Introduction. Modification of traditional materials based on mineral binders with fine-dispersed and nano-additives is an essential way to create new functional construction materials with a set of unique characteristics. However, the main difficulty in this process is the method of introducing a finely dispersed component into the cement matrix and the uniformity of its distribution. The homogeneous distribution of the additive particles in the cement composite improves the physical and mechanical characteristics, intensifies the hydration of cement clinker minerals, and is leading to a more durable and dense cement stone structure. The main methods of introducing additives into the cement composition include joint grinding, dry mixing and the introduction of a stabilized suspension of the additive instead of mixing water. Thus, the purpose of this research is to compare the options for the introduction of additives based on the TiO2–Bi2O3 oxide system, which can provide the cement composite with improved physical, mechanical and structural characteristics and the ability to resist mold fouling. The object of this research is the cement compositions modified with an additive based on the TiO2–Bi2O3 system. Materials and methods. The studies were carried out to establish the optimal method of introducing a fine-dispersed additive based on the TiO2–Bi2O3 system. At the first stage, the phase and granulometric composition of the additive was studied, then the additive was introduced into the cement composition in four different ways. The cement stone samples were obtained by dry mixing of the components then mixed with water, by mixing cement powder with water suspension of the additive after ultrasound processing, by mixing a dry mixture of cement and an additive with water-plasticizer solution, and cement powder mixed with water-polymer suspension of the additive after ultrasound processing. After that, the strength characteristics, porosity and ability of the samples to resist fungi fouling were investigated. Results. As a result of the study, the authors concluded that the highest physical and mechanical characteristics of cement stone can be provided by introducing an additive in the form of a stabilized water-polymer suspension. This method contributes to the formation of a more durable and dense structure of cement stone, with an increase in strength of 31; 38 and 44.8% at first day age, 28; 30 and 32% at third day age and 2.4; 9.0 and 14% at 28 days age relative to the control sample containing cement, water and plasticizer. It was found that the highest strength results were shown by a sample containing a stabilized suspension of an additive with a concentration of 50 g/l. The study of the cement stone porosity showed its decrease by 13% at first day age in relation to the control sample with a plasticizer, and by 10% after 28 days of hardening. It was also shown that samples modified with 50 g/l (1.7 wt.%) of the additive demonstrate resistance to bio-fouling. Conclusion. As a result of the research, the authors concluded that the optimal way to introduce a finely dispersed additive based on the TiO2–Bi2O3 system is to mix cement powder with a stabilized water-polymer suspension of the additive, resulting in a more durable and dense structure of cement stone, especially at an early stage of hydration, which can also resist fungi bio-fouling. Thus, the authors came to the conclusion that the cement compositions obtained by this method can be applied as repair compounds and tile grout in damp shaded rooms with favorable conditions for fungi colonization.

Keywords