PLoS ONE (Jan 2016)
Pullulanase Is Necessary for the Efficient Intracellular Growth of Francisella tularensis.
Abstract
Pullulanase, an enzyme that catalyzes the hydrolysis of polysaccharides, has been identified in a broad range of organisms, including bacteria, yeasts, fungi, and animals. The pullulanase (pulB; FTT_0412c) of F. tularensis subspecies tularensis Schu S4 is considered to be a homologue of the type I pullulanase (pulA) of the other Francisella subspecies. The significance of Francisella pullulanase has been obscure until now. In the present study, we characterized a recombinant PulB of F. tularensis SCHU P9, which was expressed as a his-tagged protein in Escherichia coli. The recombinant PulB was confirmed to be a type I pullulanase by its enzymatic activity in vitro. A pulB gene knockout mutant of F. tularensis SCHU P9 (ΔpulB) was constructed using the TargeTron Knockout system and plasmid pKEK1140 to clarify the function of PulB during the growth of F. tularensis in macrophages. The intracellular growth of the ΔpulB mutant in murine macrophage J774.1 cells was significantly reduced compared with that of the parental strain SCHU P9. Expression of PulB in ΔpulB, using an expression plasmid, resulted in the complementation of the reduced growth in macrophages, suggesting that PulB is necessary for the efficient growth of F. tularensis in macrophages. To assess the role of PulB in virulence, the knockout and parent bacterial strains were used to infect C57BL/6J mice. Histopathological analyses showed that tissues from ΔpulB-infected mice showed milder lesions compared to those from SCHU P9-infected mice. However, all mice infected with SCHU P9 and ΔpulB showed the similar levels of bacterial loads in their tissues. The results suggest that PulB plays a significant role in bacterial growth within murine macrophage but does not contribute to bacterial virulence in vivo.