Advanced Engineering Research (Dec 2018)
Development and correctness analysis of the mathematical model of transport and suspension sedimentation depending on bottom relief variation
Abstract
Introduction. The paper is devoted to the study on the three-dimensional model of transport and suspension sedimentation in the coastal area due to changes in the bottom relief. The model considers the following processes: advective transfer caused by the aquatic medium motion, micro-turbulent diffusion, and gravity sedimentation of suspended particles, as well as the bottom geometry variation caused by the particle settling or bottom sediment rising. The work objective was to conduct an analytical study of the correctness of the initial-boundary value problem corresponding to the constructed model.Materials and Methods. The change in the bottom relief aids in solution to the initial-boundary value problem for a parabolic equation with the lowest derivatives in a domain whose geometry depends on the desired function of the solution, which in general leads to a nonlinear formulation of the problem. The model is linearized on the time grid due to the “freezing” of the bottom relief within a single step in time and the subsequent recalculation of the bottom surface function on the basis of the changed function of the suspension concentration, as well as a possible change in the velocity vector of the aquatic medium.Research Results. For the linearized problem, a quadratic functional is constructed, and the uniqueness of the solution to the corresponding initial boundary value problem is proved within the limits of an unspecified time step. On the basis of the quadratic functional transformation, we obtain a prior estimate of the solution norm in the functional space L2 as a function of the integral time estimates of the right side, and the initial condition. Thus, the stability of the solution to the initial problem from the change of the initial and boundary conditions, the right-hand side function, is established.Discussion and Conclusions. The model can be of value for predicting the spread of contaminants and changes in the bottom topography, both under an anthropogenic impact and due to the natural processes in the coastal area.
Keywords