Malaria Journal (Jul 2022)

Feasibility of community at-home dried blood spot collection combined with pooled reverse transcription PCR as a viable and convenient method for malaria epidemiology studies

  • Dianna E. B. Hergott,
  • Tonny J. Owalla,
  • Jennifer E. Balkus,
  • Bernadette Apio,
  • Jimmy Lema,
  • Barbara Cemeri,
  • Andrew Akileng,
  • Annette M. Seilie,
  • Chris Chavtur,
  • Weston Staubus,
  • Ming Chang,
  • Thomas G. Egwang,
  • Sean C. Murphy

DOI
https://doi.org/10.1186/s12936-022-04239-x
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Many Plasmodium infections in endemic regions exist at densities below the limit of detection of standard diagnostic tools. These infections threaten control efforts and may impact vaccine and therapeutic drug studies. Simple, cost-effective methods are needed to study the natural history of asymptomatic submicroscopic parasitaemia. Self-collected dried blood spots (DBS) analysed using pooled and individual quantitative reverse transcription polymerase chain reaction (qRT-PCR) provide such a solution. Here, the feasibility and acceptability of daily at-home DBS collections for qRT-PCR was studied to better understand low-density infections. Methods Rapid diagnostic test (RDT)-negative individuals in Katakwi District, northeastern Uganda, were recruited between April and May 2021. Venous blood samples and clinic-collected DBS were taken at enrollment and at four weekly clinic visits. Participants were trained in DBS collection and asked to collect six DBS weekly between clinic visits. Opinions about the collection process were solicited using daily Diary Cards and a Likert scale survey at the final study visit. Venous blood and DBS were analysed by Plasmodium 18S rRNA qRT-PCR. The number of participants completing the study, total DBS collected, and opinions of the process were analysed to determine compliance and acceptability. The human internal control mRNA and Plasmodium 18S rRNA were evaluated for at-home vs. clinic-collected DBS and venous blood to assess quality and accuracy of at-home collected samples. Results One-hundred two adults and 29 children were enrolled, and 95 and 26 completed the study, respectively. Three individuals withdrew due to pain or inconvenience of procedures. Overall, 96% of participants collected ≥ 16 of 24 at-home DBS, and 87% of DBS contained ≥ 40 µL of blood. The procedure was well tolerated and viewed favourably by participants. At-home collected DBS were acceptable for qRT-PCR and showed less than a one qRT-PCR cycle threshold shift in the human control mRNA compared to clinic-collected DBS. Correlation between Plasmodium falciparum 18S rRNA from paired whole blood and DBS was high (R = 0.93). Conclusions At-home DBS collection is a feasible, acceptable, and robust method to obtain blood to evaluate the natural history of low-density Plasmodium infections by qRT-PCR.

Keywords