Earth (Aug 2022)

The Application of Life Cycle Assessment to Evaluate the Environmental Impacts of Edible Insects as a Protein Source

  • Giuliana Vinci,
  • Sabrina Antonia Prencipe,
  • Luca Masiello,
  • Mary Giò Zaki

DOI
https://doi.org/10.3390/earth3030054
Journal volume & issue
Vol. 3, no. 3
pp. 925 – 938

Abstract

Read online

Animal based-food products represent an essential source of protein supply in overall diets, and livestock provide 25% of the total protein content consumed by humans as food. Concurrently, livestock significantly impacts the environment, being responsible for 10–12% of total anthropogenic CO2 emissions. Among livestock, pork is considered one that accounts for the greatest impact in terms of emissions, about 4.62 kg CO2 eq/kg. Furthermore, the growing global demand for protein sources has led to a widespread need to find agri-food solutions that meet the demand for food through sustainable production systems. The high nutritional quality of edible insects, in terms of amino acids, fats, minerals, and vitamins, is comparable with meat products. This study aims to compare protein production from pork and mealworm, assessing the degree of substitution and environmental impacts of the two production systems. To assess the impacts of protein production from mealworms and pork on the ecosystem, resources, and human health, an LCA was conducted using the ReCiPe 2016 Endpoint method, with a 100-year hierarchical perspective (H) V1.05. It emerged that pork production is characterized by high impacts on the ecosystem, land use, climate-altering emissions, and fossil resources, in contrast with mealworm protein production. The low impact of insect protein production and the high nutritional values make edible insects a sustainable solution to growing food demand and economic benefits render edible insects globally a major potential future food.

Keywords