Toxics (Oct 2024)
Efficient Degradation of Ofloxacin by Magnetic CuFe<sub>2</sub>O<sub>4</sub> Coupled PMS System: Optimization, Degradation Pathways and Toxicity Evaluation
Abstract
Magnetic CuFe2O4 was prepared with the modified sol–gel method and used for enhanced peroxymonosulfate (PMS) activation and ofloxacin (OFL) degradation. The OFL could almost degrade within 30 min at a catalyst dosage of 0.66 g/L, PMS concentration of 0.38 mM, and initial pH of 6.53 without adjustment, using response surface methodology (RSM) with Box-Behnken design (BBD). In the CuFe2O4/PMS system, the coexisting substances, including CO32−, NO3−, SO42−, Cl− and humic acid, have little effect on the OFL degradation. The system also performs well in actual water, such as tap water and surface water (Mei Lake), indicating the excellent anti-interference ability of the system. The cyclic transformation between Cu(II)/Cu(I) and Fe(III)/Fe(II) triggers the generation of active radicals including SO4•−, •OH, •O2− and 1O2. The OFL degradation pathway, mainly involving the dehydrogenation, deamination, hydroxylation, decarboxylation and carboxylation processes, was proposed using mass spectroscopy. Moreover, the toxicity assessment indicated that the end intermediates are environmentally friendly. This study is about how the CuFe2O4/PMS system performs well in PMS activation for refractory organic matter removal in wastewater.
Keywords