AIP Advances (Jan 2021)
Crystalline structure and magnetic properties of pyrite FeS2
Abstract
Iron pyrite (FeS2) has attracted significant attention as a promising inorganic material in various applications, such as electrode materials for high-energy batteries, medical diagnostics, semiconductor materials, and photovoltaic solar cells. In this study, we characterized the crystalline structure and magnetic properties of FeS2 using X-ray diffraction (XRD), vibrating sample magnetometry, and Mössbauer spectroscopy. The refined XRD patterns confirmed that the crystalline structure of FeS2 was cubic (Pa-3 space group) with lattice constant a0 = 5.417 Å. The temperature dependence of the zero-field-cooled and field-cooled curves and the hysteresis loops were measured at various temperatures between 4.2 and 295 K. The Mössbauer spectra collected in the temperature range of 4.2–500 K were fitted with one doublet. The ΔEQ values increased slightly with decreasing temperature owing to changes in the Fe–S distance. The charge state was determined to be Fe2+ based on the isomer shift (δ).