BMC Plant Biology (Feb 2021)

Deciphering the dynamic gene expression patterns of pollen abortion in a male sterile line of Avena sativa through transcriptome analysis at different developmental stages

  • Lijun Zhang,
  • Mingchuan Ma,
  • Lin Cui,
  • Longlong Liu

DOI
https://doi.org/10.1186/s12870-021-02881-2
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Male sterility (MS) has important applications in hybrid seed production, and the abortion of anthers has been observed in many plant species. While most studies have focused on the genetic factors affecting male sterility, the dynamic gene expression patterns of pollen abortion in male sterile lines have not been fully elucidated. In addition, there is still no hybrid oat that is commercially planted due to the lack of a suitable system of male sterility for hybrid breeding. Results In this study, we cultivated a male sterile oat line and a near-isogenic line by crossbreeding to elucidate the expression patterns of genes that may be involved in sterility. The first reported CA male sterile (CAMS) oat line was used for cross-testing and hybridization experiments and was confirmed to exhibit a type of nuclear sterility controlled by recessive genes. Oat stamens of two lines were sampled at four different developmental stages separately. Paired-end RNA sequencing was performed for each sample and generated 252.84 Gb sequences. There were 295,462 unigenes annotated in public databases in all samples, and we compared the histological characteristics and transcriptomes of oat stamens from the two oat lines at different developmental stages. Our results demonstrate that the sterility of the male sterile oat line occurs in the early stage of stamen development and is primarily attributable to abnormal meiosis and the excessive accumulation of superoxide. Conclusions To the best of our knowledge, this study is the first to decipher the dynamic expression profiles of pollen abortion CAMS and CA male fertile (CAMF) oat lines, which may represent a valuable resource for further studies attempting to understand pollen abortion and anther development in oats.

Keywords