Ecotoxicology and Environmental Safety (Sep 2024)

Effects of polyvinyl chloride and low-density polyethylene microplastics on oxidative stress and mitochondria function of earthworm (Eisenia fetida)

  • Songhee Lee,
  • Jisun Choi,
  • Eun Hea Jho,
  • Sooim Shin

Journal volume & issue
Vol. 283
p. 116847

Abstract

Read online

Plastics are widely used worldwide due to their convenience. However, microplastics (MPs) accumulation poses a serious threat to ecosystem health. Therefore, understanding the effects of MPs on living organisms within their native ecosystem is crucial. Previous studies have primarily focused on the impacts of MPs in aquatic environments, whereas the effects of MPs on terrestrial ecosystems have remained largely understudied. Therefore, our study assessed the impacts of MPs on soil ecosystems by characterizing their toxic effects on earthworms (Eisenia fetida). Here, we exposed earthworms to two representative plastics within soil environments: polyvinyl chloride (PVC) and low-density polyethylene (LDPE). Given the known link between MPs and oxidative stress, we next quantified oxidative stress markers and mitochondrial function to assess the effects of MPs on the redox metabolism of earthworms. Mitochondria are crucial metabolic organelles that generate reactive oxygen species via uncontrolled ATP production. Our findings demonstrated that MPs exert different effects depending on their type. Neither the PVC-exposed groups nor the LDPE-exposed groups exhibited changes in oxidative stress, as worked by the action of superoxide dismutase (SOD) and glutathione (GSH). While treatment of the two types of MP did not significantly affect the amount of reactive oxygen species/reactive nitrogen species (ROS/RNS) generated, PVC exhibited a more pronounced effect on antioxidant system compared to LDPE. However, mitochondrial function was markedly decreased in the group exposed to high LDPE concentrations, suggesting that the examined LDPE concentrations were too low to activate compensatory mechanisms. Collectively, our findings demonstrated that exposure of MPs not only influences the antioxidant defense mechanisms of earthworms but also alters their mitochondrial function depending on their types.

Keywords