Horticulturae (May 2025)

Carrot (<i>Daucus carota</i> L.) Haploid Embryo Genome Doubling with Colchicine and Trifluralin

  • Maria Fomicheva,
  • Elena Kozar,
  • Elena Domblides

DOI
https://doi.org/10.3390/horticulturae11050505
Journal volume & issue
Vol. 11, no. 5
p. 505

Abstract

Read online

The production of carrot (D. carota L.) doubled haploids (DH) for the acceleration of this important vegetable crop breeding requires genome doubling of haploid regenerants. If spontaneous doubling does not occur, artificial chromosome doubling can be complicated by the lack of efficient genome-doubling protocols. We tested an antimitotic agent treatment of carrot at the embryo stage. It allowed us to produce and treat a large number of clonal carrot embryos (at least 30 embryos per treatment condition) in small volumes with minimal reagent amounts. We showed that 0.01–1 g/L colchicine did not perturb carrot development. Trifluralin showed no signs of toxicity at 0.001 and 0.01 g/L concentrations, but 0.1 g/L trifluralin reduced survival by 40% and delayed plantlet regeneration. We showed via DNA content flow cytometry that 0.01–1 g/L colchicine and 0.001–0.1 g/L trifluralin could double the carrot genome. The highest diploid percent was observed at 1 g/L colchicine (34%) and 0.1 g/L trifluralin (28%). The highest percent of diploids together with mixoploids (partial diploids) was at 0.01 and 0.1 g/L trifluralin (over 70%), followed by 1 g/L colchicine (56%). To our knowledge, this is the first report on trifluralin application for genome doubling in Apiaceae. In our study, we determined colchicine and trifluralin toxicity and doubling efficiency at different concentrations that can be used for carrot DH-line production and further improvement of genome doubling methods.

Keywords