Characterization of the Isocitrate Dehydrogenase Gene Family and Their Response to Drought Stress in Maize
Ningning Wei,
Ziran Zhang,
Haoxiang Yang,
Die Hu,
Ying Wu,
Jiquan Xue,
Dongwei Guo,
Shutu Xu
Affiliations
Ningning Wei
Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling 712100, China
Ziran Zhang
Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling 712100, China
Haoxiang Yang
Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling 712100, China
Die Hu
Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling 712100, China
Ying Wu
Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling 712100, China
Jiquan Xue
Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling 712100, China
Dongwei Guo
Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling 712100, China
Shutu Xu
Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling 712100, China
Isocitrate dehydrogenase (IDH) is a key rate-limiting enzyme in the tricarboxylic acid cycle and acts in glutamine synthesis. IDH also participates in plant growth and development and in response to abiotic stresses. We identified 11 maize IDH genes (ZmIDH) and classified these genes into ZmNAD-IDH and ZmNADP-IDH groups based on their different coenzymes (NAD+ or NADP+). The ZmNAD-IDH group was further divided into two subgroups according to their catalytic and non-catalytic subunits, as in Arabidopsis. The ZmIDHs significantly differed in physicochemical properties, gene structure, conserved motifs, and protein tertiary structure. Promoter prediction analysis revealed that the promoters of these ZmIDHs contain cis-acting elements associated with light response, abscisic acid, phytohormones, and abiotic stresses. ZmIDH is predicted to interact with proteins involved in development and stress resistance. Expression analysis of public data revealed that most ZmIDHs are specifically expressed in anthers. Different types of ZmIDHs responded to abiotic stresses with different expression patterns, but all exhibited responses to abiotic stresses to some extent. In addition, analysis of the public sequence from transcription data in an association panel suggested that natural variation in ZmIDH1.4 will be associated with drought tolerance in maize. These results suggested that ZmIDHs respond differently and/or redundantly to abiotic stresses during plant growth and development, and this analysis provides a foundation to understand how ZmIDHs respond to drought stress in maize.