Applied Sciences (Sep 2023)

Improvement of the Performance of Scattering Suppression and Absorbing Structure Depth Estimation on Transillumination Image by Deep Learning

  • Ngoc An Dang Nguyen,
  • Hoang Nhut Huynh,
  • Trung Nghia Tran

DOI
https://doi.org/10.3390/app131810047
Journal volume & issue
Vol. 13, no. 18
p. 10047

Abstract

Read online

The development of optical sensors, especially with regard to the improved resolution of cameras, has made optical techniques more applicable in medicine and live animal research. Research efforts focus on image signal acquisition, scattering de-blur for acquired images, and the development of image reconstruction algorithms. Rapidly evolving artificial intelligence has enabled the development of techniques for de-blurring and estimating the depth of light-absorbing structures in biological tissues. Although the feasibility of applying deep learning to overcome these problems has been demonstrated in previous studies, limitations still exist in terms of de-blurring capabilities on complex structures and the heterogeneity of turbid medium, as well as the limit of accurate estimation of the depth of absorptive structures in biological tissues (shallower than 15.0 mm). These problems are related to the absorption structure’s complexity, the biological tissue’s heterogeneity, the training data, and the neural network model itself. This study thoroughly explores how to generate training and testing datasets on different deep learning models to find the model with the best performance. The results of the de-blurred image show that the Attention Res-UNet model has the best de-blurring ability, with a correlation of more than 89% between the de-blurred image and the original structure image. This result comes from adding the Attention gate and the Residual block to the common U-net model structure. The results of the depth estimation show that the DenseNet169 model shows the ability to estimate depth with high accuracy beyond the limit of 20.0 mm. The results of this study once again confirm the feasibility of applying deep learning in transmission image processing to reconstruct clear images and obtain information on the absorbing structure inside biological tissue. This allows the development of subsequent transillumination imaging studies in biological tissues with greater heterogeneity and structural complexity.

Keywords