Beilstein Journal of Organic Chemistry (Oct 2021)

Silica gel and microwave-promoted synthesis of dihydropyrrolizines and tetrahydroindolizines from enaminones

  • Robin Klintworth,
  • Garreth L. Morgans,
  • Stefania M. Scalzullo,
  • Charles B. de Koning,
  • Willem A. L. van Otterlo,
  • Joseph P. Michael

DOI
https://doi.org/10.3762/bjoc.17.170
Journal volume & issue
Vol. 17, no. 1
pp. 2543 – 2552

Abstract

Read online

A wide range of N-(ethoxycarbonylmethyl)enaminones, prepared by the Eschenmoser sulfide contraction between N-(ethoxycarbonylmethyl)pyrrolidine-2-thione and various bromomethyl aryl and heteroaryl ketones, underwent cyclization in the presence of silica gel to give ethyl 6-(hetero)aryl-2,3-dihydro-1H-pyrrolizine-5-carboxylates within minutes upon microwave heating in xylene at 150 °C. Instead of functioning as a nucleophile, the enaminone acted as an electrophile at its carbonyl group during the cyclization. Yields of the bicyclic products were generally above 75%. The analogous microwave-assisted reaction to produce ethyl 2-aryl-5,6,7,8-tetrahydroindolizine-3-carboxylates from (E)-ethyl 2-[2-(2-oxo-2-arylethylidene)piperidin-1-yl]acetates failed in nonpolar solvents, but occurred in ethanol at lower temperature and microwave power, although requiring much longer time. A possible mechanism for the cyclization is presented, and further functionalization of the newly created pyrrole ring in the dihydropyrrolizine core is described.

Keywords