Advances in Mathematical Physics (Jan 2015)

Geometrical Applications of Split Octonions

  • Merab Gogberashvili,
  • Otari Sakhelashvili

DOI
https://doi.org/10.1155/2015/196708
Journal volume & issue
Vol. 2015

Abstract

Read online

It is shown that physical signals and space-time intervals modeled on split-octonion geometry naturally exhibit properties from conventional (3 + 1)-theory (e.g., number of dimensions, existence of maximal velocities, Heisenberg uncertainty, and particle generations). This paper demonstrates these properties using an explicit representation of the automorphisms on split-octonions, the noncompact form of the exceptional Lie group G2. This group generates specific rotations of (3 + 4)-vector parts of split octonions with three extra time-like coordinates and in infinitesimal limit imitates standard Poincare transformations. In this picture translations are represented by noncompact Lorentz-type rotations towards the extra time-like coordinates. It is shown how the G2 algebra’s chirality yields an intrinsic left-right asymmetry of a certain 3-vector (spin), as well as a parity violating effect on light emitted by a moving quantum system. Elementary particles are connected with the special elements of the algebra which nullify octonionic intervals. Then the zero-norm conditions lead to free particle Lagrangians, which allow virtual trajectories also and exhibit the appearance of spatial horizons governing by mass parameters.