EURASIP Journal on Wireless Communications and Networking (May 2019)

Performance of a dense urban massive MIMO network from a simulated ray-based channel

  • Mohammed Zahid Aslam,
  • Yoann Corre,
  • Emil Björnson,
  • Erik G. Larsson

DOI
https://doi.org/10.1186/s13638-019-1425-1
Journal volume & issue
Vol. 2019, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Massive MIMO network deployments are expected to be a key feature of the upcoming 5G communication systems. Such networks are able to achieve a high level of channel quality and can simultaneously serve multiple users with the same resources. In this paper, realistic massive MIMO channels are evaluated both in single and multi-cell environments. The favorable propagation property is evaluated in the single-cell scenario and provides perspectives on the minimal criteria required to achieve such conditions. The dense multi-cell urban scenario provides a comparison between linear, planar, circular, and cylindrical arrays to evaluate a large-scale multi-cell massive MIMO network. The system-level performance is predicted using two different kinds of channel models. First, a ray-based deterministic tool is utilized in a real North American city environment. Second, an independent and identically distributed (i.i.d.) Rayleigh fading channel model is considered, as often used in previously published massive MIMO studies. The analysis is conducted in a 16-macro-cell network with both randomly distributed outdoor and indoor users. It is shown that the physical array properties like the shape and configuration have a large impact on the throughput statistics. Although the system-level performance with i.i.d. Rayleigh fading can be close to the deterministic prediction in some situations (e.g., with large linear arrays), significant differences are noticed when considering other types of arrays. The differences in the performance of the various arrays utilizing the exact same network parameters and the same number of total antenna elements provide insights into the selection of these physical parameters for upcoming 5G networks.

Keywords