Scientific Reports (Nov 2024)
Comparing the performance of ChatGPT-3.5-Turbo, ChatGPT-4, and Google Bard with Iranian students in pre-internship comprehensive exams
Abstract
Abstract This study aims to measure the performance of different AI-language models in three sets of pre-internship medical exams and to compare their performance with Iranian medical students. Three sets of Persian pre-internship exams were used, along with their English translation (six sets in total). In late September 2023, we sent requests to ChatGPT-3.5-Turbo-0613, GPT-4-0613, and Google Bard in both Persian and English languages (excluding questions with any visual content) with each query in a new session and reviewed their responses. GPT models produced responses at varying levels of randomness. In both Persian and English tests, GPT-4 ranked first and obtained the highest score in all exams and different levels of randomness. While Google Bard scored below average on the Persian exams (still in an acceptable range), ChatGPT-3.5 failed all exams. There was a significant difference between the Large Language Models (LLMs) in Persian exams. While GPT-4 yielded the best scores on the English exams, the distinction between all LLMs and students was not statistically significant. The GPT-4 model outperformed students and other LLMs in medical exams, highlighting its potential application in the medical field. However, more research is needed to fully understand and address the limitations of using these models.
Keywords