Materials (May 2024)

Reducing Water Absorption and Improving Flexural Strength of Aluminosilicate Ceramics by MnO<sub>2</sub> Doping

  • Bingxin Yang,
  • Shaojun Lu,
  • Caihong Li,
  • Chen Fang,
  • Yan Wan,
  • Yangming Lin

DOI
https://doi.org/10.3390/ma17112557
Journal volume & issue
Vol. 17, no. 11
p. 2557

Abstract

Read online

As key performance indicators, the water absorption and mechanical strength of ceramics are highly associated with sintering temperature. Lower sintering temperatures, although favorable for energy saving in ceramics production, normally render the densification degree and water absorption of as-prepared ceramics to largely decline and increase, respectively. In the present work, 0.5 wt.% MnO2, serving as an additive, was mixed with aluminosilicate ceramics using mechanical stirring at room temperature, achieving a flexural strength of 58.36 MPa and water absorption of 0.05% and lowering the sintering temperature by 50 °C concurrently. On the basis of the results of TG-DSC, XRD, MIP, and XPS, etc., we speculate that the MnO2 additive promoted the elimination of water vapor in the ceramic bodies, effectively suppressing the generation of pores in the sintering process and facilitating the densification of ceramics at a lower temperature. This is probably because the MnO2 transformed into a liquid phase in the sintering process flows into the gap between grains, which removed the gas inside pores and filled the pores, suppressing the generation of pores and the abnormal growth of grains. This study demonstrated a facile and economical method to reduce the porosity and enhance the densification degree in the practical production of aluminosilicate ceramics.

Keywords