Biotechnology for Biofuels (Nov 2018)

Refined soybean oil wastewater treatment and its utilization for lipid production by the oleaginous yeast Trichosporon fermentans

  • Dayu Yu,
  • Xiaoning Wang,
  • Xue Fan,
  • Huimin Ren,
  • Shuang Hu,
  • Lei Wang,
  • Yunfen Shi,
  • Na Liu,
  • Nan Qiao

DOI
https://doi.org/10.1186/s13068-018-1306-6
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background The release of refined soybean oil wastewater (RSOW) with a high chemical oxygen demand (COD) and oil content burdens the environment. The conversion of RSOW into lipids by oleaginous yeasts may be a good way to turn this waste into usable products. Results The oleaginous yeast Trichosporon fermentans was used for treating the RSOW without sterilization, dilution, or nutrient supplementation. It was found that the COD and oil content of the RSOW were removed effectively; microbial oil was abundantly produced in 48 h; and the phospholipids in the RSOW tended to contribute to a higher biomass and microbial lipid content. With Plackett–Burman design and response surface design experiments, the optimal wastewater treatment conditions were determined: temperature 28.3 °C, amount of inoculum 5.9% (v/v), and initial pH 6.1. The optimized conditions were used in a 5-L bioreactor to treat the RSOW. The maximum COD degradation of 94.7% was obtained within 40 h, and the removal of the oil content was 89.9%. The biomass was 7.9 g/L, the lipid concentration was 3.4 g/L, and the lipid content was 43% (w/w). The microbial oil obtained, with a main component of unsaturated fatty acids, was similar to vegetable oils and was suggested as a potential raw material for biodiesel production. Conclusion Trichosporon fermentans can be effectively used for RSOW treatment, and lipid production and can complete pretreatment and biochemical treatment simultaneously, allowing the utilization of RSOW, which both solves an environmental problem and positively impacts the use of resources. These results provide valuable information for developing and designing more efficient waste-into-lipid bioprocesses.

Keywords