Metformin Acutely Mitigates Oxidative Stress in Human Atrial Tissue: A Pilot Study in Overweight Non-Diabetic Cardiac Patients
Ana Lascu,
Loredana-Nicoleta Ionică,
Adrian-Petru Merce,
Maria-Daniela Dănilă,
Lucian Petrescu,
Adrian Sturza,
Danina-Mirela Muntean,
Caius Glad Streian
Affiliations
Ana Lascu
Department III Functional Sciences—Pathophysiology, “Victor Babeş” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timişoara, Romania
Loredana-Nicoleta Ionică
Centre for Translational Research and Systems Medicine, “Victor Babeş” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timişoara, Romania
Adrian-Petru Merce
Centre for Translational Research and Systems Medicine, “Victor Babeş” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timişoara, Romania
Maria-Daniela Dănilă
Department III Functional Sciences—Pathophysiology, “Victor Babeş” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timişoara, Romania
Lucian Petrescu
Centre for Translational Research and Systems Medicine, “Victor Babeş” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timişoara, Romania
Adrian Sturza
Department III Functional Sciences—Pathophysiology, “Victor Babeş” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timişoara, Romania
Danina-Mirela Muntean
Department III Functional Sciences—Pathophysiology, “Victor Babeş” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timişoara, Romania
Caius Glad Streian
Institute for Cardiovascular Diseases of Timișoara, “Victor Babeş” University of Medicine and Pharmacy of Timișoara, G. Adam Str., No. 13A, 300310 Timișoara, Romania
Metformin, the first-line drug in type 2 diabetes mellitus, elicits cardiovascular protection also in obese patients via pleiotropic effects, among which the anti-oxidant is one of the most investigated. The aim of the present study was to assess whether metformin can acutely mitigate oxidative stress in atrial tissue harvested from overweight non-diabetic patients. Right atrial appendage samples were harvested during open-heart surgery and used for the evaluation of reactive oxygen species (ROS) production by means of confocal microscopy (superoxide anion) and spectrophotometry (hydrogen peroxide). Experiments were performed after acute incubation with metformin (10 µM) in the presence vs. absence of angiotensin II (AII, 100 nM), lipopolysaccharide (LPS, 1 μg/mL), and high glucose (Gluc, 400 mg/dL). Stimulation with AII, LPS, and high Gluc increased ROS production. The magnitude of oxidative stress correlated with several echocardiographic parameters. Metformin applied in the lowest therapeutic concentration (10 µM) was able to decrease ROS generation in stimulated but also non-stimulated atrial samples. In conclusion, in a pilot group of overweight non-diabetic cardiac patients, acute incubation with metformin at a clinically relevant dose alleviated oxidative stress both in basal conditions and conditions that mimicked the activation of the renin–angiotensin–aldosterone system, acute inflammation, and uncontrolled hyperglycemia.