eLife (Jun 2014)

Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast

  • Sarah E Zanders,
  • Michael T Eickbush,
  • Jonathan S Yu,
  • Ji-Won Kang,
  • Kyle R Fowler,
  • Gerald R Smith,
  • Harmit Singh Malik

DOI
https://doi.org/10.7554/eLife.02630
Journal volume & issue
Vol. 3

Abstract

Read online

Hybrid sterility is one of the earliest postzygotic isolating mechanisms to evolve between two recently diverged species. Here we identify causes underlying hybrid infertility of two recently diverged fission yeast species Schizosaccharomyces pombe and S. kambucha, which mate to form viable hybrid diploids that efficiently complete meiosis, but generate few viable gametes. We find that chromosomal rearrangements and related recombination defects are major but not sole causes of hybrid infertility. At least three distinct meiotic drive alleles, one on each S. kambucha chromosome, independently contribute to hybrid infertility by causing nonrandom spore death. Two of these driving loci are linked by a chromosomal translocation and thus constitute a novel type of paired meiotic drive complex. Our study reveals how quickly multiple barriers to fertility can arise. In addition, it provides further support for models in which genetic conflicts, such as those caused by meiotic drive alleles, can drive speciation.

Keywords