World Electric Vehicle Journal (Jul 2023)

VSG Control for Cascaded Three-Phase Bridge Based Battery Inverter

  • Xiaojing Qi,
  • Jianyong Zheng

DOI
https://doi.org/10.3390/wevj14080203
Journal volume & issue
Vol. 14, no. 8
p. 203

Abstract

Read online

With the increasing number of new energy sources connected to the grid, the unbalanced output of three-phase grid-connected inverters and the lack of no inertia and damping characteristics in the traditional microgrid control system will seriously affect the stability of voltage, frequency, and power angle for microgrids. This paper proposes a novel cascaded three-phase bridge inverter topology for the battery system used for the electric vehicle. Compared with traditional cascaded H-bridge inverters, the proposed multilevel inverter can achieve self-adaptive balance for three phases. The mathematical model of a cascaded three-phase bridge inverter is established in this paper. Based on the voltage and current equations of a multilevel inverter, a new modulation strategy named carrier phase-shifted-distributed pulse width modulation (CPSD-PWM) was developed, which is more suitable for cascaded three-phase bridge inverters. The harmonic analytic equations of carrier phase-shifted pulse width modulation (CPS-PWM) and CPSD-PWM are constructed by the double Fourier analysis method. Compared with the traditional PWM modulation strategy, the CPSD-PWM can reduce the output harmonics and improve the balance of the three-phase output, which can realize the three-phase adaptive balance in the cascaded three-phase bridge inverter. This paper develops a cascaded three-phase bridge multilevel power converter system based on the virtual synchronous generator (VSG) control strategy. The voltage and frequency of inverter output can be accurately controlled in both island mode and grid-connected mode through active power-frequency regulation and reactive power–voltage regulation, and the stability of primary frequency regulation for the multilevel microgrid inverter can be improved by collaborative optimization of virtual inertia and virtual damping. The CPSD-PWM modulation strategy and VSG control strategy are verified by the simulation results and experimental data for the cascaded three-phase bridge inverter.

Keywords