European Radiology Experimental (Nov 2018)
Comparison of DTI analysis methods for clinical research: influence of pre-processing and tract selection methods
Abstract
Abstract Background The primary aim was to compare fractional anisotropy (FA) values derived with different diffusion tensor imaging (DTI) analysis approaches (atlas-based, streamline tractography, and combined). A secondary aim was to compare FA values and number of tracts (NT) with the clinical motor outcome quantified by the functional independence measure for children (WeeFIM). Methods Thirty-nine DTI datasets of children with acquired brain injury were analysed. Regions of interest for the ipsilesional corticospinal tract were defined and mean FA and NT were calculated. We evaluated FA values with Spearman correlation, the Friedman and Wilcoxon tests, and Bland-Altman analysis. DTI values were compared to WeeFIM values by non-parametric partial correlation and accuracy was assessed by receiver operating characteristics analysis. Results The FA values from all approaches correlated significantly with each other (p < 0.001). However, the FA values from streamline tractography were significantly higher (mean ± standard deviation (SD), 0.52 ± 0.08) than those from the atlas-based (0.42 ± 0.11) or the combined approach (0.41 ± 0.11) (p < 0.001 for both). FA and NT values correlated significantly with WeeFIM values (atlas-based FA, partial correlation coefficient (ρ) = 0.545, p = 0.001; streamline FA, ρ = 0.505, p = 0.002; NT, ρ = 0.434, p = 0.008; combined FA, ρ = 0.611, p < 0.001). FA of the atlas-based approach (sensitivity 90%, specificity 67%, area under the curve 0.82) and the combined approach (87%, 67%, 0.82), provided the highest predictive accuracy for outcome compared to FA (70%, 67%, 0.67) and NT (50%, 100%, 0.79, respectively) of the streamline approach. Conclusion FA values from streamline tractography were higher than those from the atlas-based and combined approach. The atlas-based and combined approach offer the best predictive accuracy for motor outcome, although both atlas-based and streamline tractography approaches provide significant predictors of clinical outcome.
Keywords