Journal of Hazardous Materials Letters (Nov 2024)

Exploring the impact of organic and inorganic amendments, with foliar application of iron nanoparticles, on cadmium stabilization and growth of maize in wastewater irrigated-soil

  • Sehar Razzaq,
  • Beibei Zhou,
  • Zakir Ullah,
  • Muhammad Zia-ur-Rehman,
  • Hongchao Guo,
  • Muhammad Adil,
  • Chen Xiaopeng,
  • Li Wen Qian

Journal volume & issue
Vol. 5
p. 100111

Abstract

Read online

Objectives: This study addresses the critical issue of Cd contamination in agricultural soils, posing substantial risks to crop productivity and food safety. While prior pot experiment has undertook this issue on a small scale, this study aims to evaluate the efficacy of selected best soil amendments, at a large-scale field experiment. Methodology: Press mud and humic acid were applied at 0.5%, while gypsum and Fe2O3 were applied at 5 mg/kg alone and with foliar application of Fe nanoparticles at 5 mg/L. Analysis: Comparative analysis with control revealed the immobilization efficiency of all amendments in descending order of effectiveness as follows: 100, 102, 104, 104, 105, 102, 105, and 105% for PM, HA, GYP, Fe, PM + Fe Nps, HA + Fe Nps, GYP + Fe Nps, and Fe + Fe Nps. Additionally, reduced growth, photosynthetic activities, and elevated levels of malondialdehyde and hydrogen peroxide, indicative of oxidative damage in control plant. Findings: Application of these amendments with foliar spraying of Fe Nps effectively mitigates Cd toxicity in maize crops, leading to improved growth, biomass, photosynthetic pigments, and antioxidant enzyme activities. Novelty/Improvement: These findings highlight the significance of exploring innovative approach of combining different amendments with foliar application of nanoparticles to mitigate Cd contamination and enhance soil health, thereby contributing to global efforts in ensuring food safety and security.

Keywords