Journal of Integrative Agriculture (Oct 2019)

Generation of recombinant rabies virus ERA strain applied to virus tracking in cell infection

  • Dan-dan ZHAO,
  • Lei SHUAI,
  • Jin-ying GE,
  • Jin-liang WANG,
  • Zhi-yuan WEN,
  • Ren-qiang LIU,
  • Chong WANG,
  • Xi-jun WANG,
  • Zhi-gao BU

Journal volume & issue
Vol. 18, no. 10
pp. 2361 – 2368

Abstract

Read online

The mechanism of rabies virus (RABV) infection still needs to be further characterized. RABV particle with self-fluorescent is a powerful viral model to visualize the viral infection process in cells. Herein, based on a reverse genetic system of the Evelyn-Rokitnicki-Abelseth (rERA) strain, we generated a recombinant RABV rERA-N/mCherry strain that stably expresses an additional ERA nucleoprotein that fuses with the red fluorescent protein mCherry (N/mCherry). The rERA-N/mCherry strain retained growth property similar to the parent strain rERA in vitro. The N/mCherry expression showed genetic stability during passage into mouse neuroblastoma (NA) cells and did not change the virulence of the vector. The rERA-N/mCherry strain was then utilized as a visual viral model to study the RABV-cell binding and internalization. We directly observed the red self-fluorescence of rERA-N/mCherry particles binding to the cell surface, and further co-localizing with clathrin in the early stage of infection in NA cells by fluorescence microscopy. Our results showed that the rERA-N/mCherry strain uses clathrin-dependent endocytosis to enter cells, which is consistent with the well-known mechanism of RABV invasion. The recombinant RABV rERA-N/mCherry thus appears to have the potential to be an effective viral model to further explore the fundamental molecular mechanism of rabies neuropathogenesis.

Keywords